webmaster
 
Cevapla
18-08-2011 16:09:21
 

El Harezmi (MS 770-840)

Harezmi 770 yılında Özbekistan'ın Karizmi kendinde dünyaya gelmiştir. Tam olarak ismi Ebu Abdullah Muhammed bin Musa El-Harezmi'dir. Kendisini matematik tarihinin en büyük bilim adımı olarak tanımlayabiliriz. Çünkü cebirin ve algoritmanın kurucusudur. El Harezmi sadece matematikle değil aynı zamanda astronomi ve coğrafyayla da ilgilenmiştir. Batı dünyasında en çok etkide bulunan bilim adamı diyebiliriz. Çalışmalarına Abbasi halifesi Mem'un tarafından Bağdat Saray Kütüphanesine getirilmesiyle başlamıştır. Daha sonra burada yabancı eserlerin tercümesini yapmak amacıyla kurulan bir tercüme akademisi olan Beyt'ül Hikme'de göreve başlar. Harezminin bu kadar önemli bir bilim adamı olmasının sebebi sadece cebirin kurucusu olması degildir aynı zamanda geliştiriciside olmasıdır. Hayatındaki bir çok büyük eserini Bağdat Saray Kütüphanesinde yapmıştır.

Harezminin ilk eserlerinden biri aritmetik alanındadır. Ancak bu alanda bıraktığı yapıtın orjinali kayıptır. Bu kitabın bu güne kadar gelmesinin sebebi Bathlı Adelard'an tarafından Lâtinciye çevrilmesinden kaynaklanır. Bu kitabın ismi De Numero Indorum (Hint Rakamları Hakkında)'dur. Bu kitabında on rakamlı konumsal Hint rakamlama ve hesaplama sistemini anlatmıştır. Batıdaki matematikçiler Romalılardan bu yana kullanılan harf rakam ve hesap sistemi yerine Hint rakam ve hesap sistemini kullanmayı bu yapıttan öğrenmişlerdir. Bu yapıtı batı dünyasındaki matematikçileri çok etkilemiştir. Daha sonra bu hesaplama sistemine Harezminin isminden türetilen algoritma (algorism) denmiştir. On rakamdan oluşan rakamlama sistemi ise, Harezmi tarafından tanıtıldığı için Arap Rakamları veya kökeni Hindistan olduğu için Hint-Arap Rakamları denmiştir.

Harezminin en büyük eseri cebirdir. Kendisi cebirin kurucusu ve geliştiricisidir. Bu konuda yazılan ilk ve yaygınlaştırılan kitap El Kitabü'l Muhtasar fi Hisabi'l Cebr ve'l Mukabele 'dir. Harezminin bu eseri kendisine İslam ve batı bilim dünyasında çok ün kazandırmıştır. Batı dünyası ilk kez bu kitap sayesinde cebiri kullanmış ve öğrenmiştir. Bu yapıtta ana konular birinci ve ikinci dereceden denklemlerin çözümleri, binom çarpımları, çeşitli cebir problemleri ve miras hesabıdır. Harezmi cebirle ilgili çalışmalarında ikinci dereceden denklemler konu üzerinde çok durmuştur. Birinci dereceden denklemleri incelerken Yanlış Yolu İle Çözme Yöntemi'ni kullanmıştır. Bu yöntemi kullanırken şu anda ax2 + bx + c = 0 biçiminde gösterdiğimiz ve çözümünü x = - b + b2 - 4ac / 2a eşitliği ile bulduğumuz ikinci dereceden denklemlerin çözümünü negatif nicelikleri bilmediği için üç grupta toplamış ve her grup için Kareye Tamamlama İşlemi'ne dayanan ayrı bir çözüm yöntemi kullanmıştır. Bu üç ayrı yöntem aşağıdaki gibidir;

Birinci tip denklemin çözümü için ilk önce bir kenarı x olan bir kare çizeriz. Bu karenin üst sağ köşesinden her iki yöne de b:2 kadar bir uzunluk eklenir ve bu uzunlukların ucundan şekil kareye tamamlanır. Bundan sonra ortaya çıkan ikinci karede bir kenarı x büyüklüğünde olan bir kare (x²), bir kenarı x ve diğer kenarı b:2 uzunluğunda olan iki dikdörtgen (x.b:2) ve bir de bir kenarı b:2 uzunluğunda olan bir kare (b:2)² bulunmuştur. Bunu formülüze edersek [x + (b:2)]² = x² + 2 (b:2 x) + (b:2)² olur. [x + (b:2)]² = x² + bx + (b:2)², x² + bx =c [x + (b:2)]² = c + (b:2)² [x + (b:2)]² = c + (b:2)² x + b:2 = (b:2)² + c.x = ((b:2)² + c - b:2.2) x + c = bx.x = b:2 + (b:2)² - c şeklinde gösterilir.

İkinci tip denklemin iki ayrı çözüm yöntemi vardır. Birinci çözümde ilk önce bir kenarı x büyüklüğünde olan bir kare alınır (x²) sonra bu kareye bir c alanı eklenir ve bir kenarı x diğer kenarı b uzunluğunda olan bir dikdörtgen elde edilir. Daha sonra b kenarının yarısından karşıya bir dikme uzatılır. Bu durumda c alanı ile x² alanı arasında (b:2 - x ) kadar bir mesafe ortaya çıkar. Sonra c alanının sağ alt köşesinden bu mesafe kadar dışa çıkıp bir (b:2 - x)² oluşturulduğunda (b:2 - x)² = (b:2)² - [ x (b:2 - x) + x . b:2] olur. (b:2 - x)² = (b:2)² - c (b:2 - x)² = (b:2)² - c.b:2 - x = (b:2)² - c.x = b:2 - (b:2)² - c şekilde çözüme ulaşılır. İkinci çözüm yönteminde ise (x - b:2)² = (b:2)² - c (x - b:2)² = (b:2)² - c.x - b:2 = (b:2)² - c.x = b:2 + (b:2)² - c fomülü kullanılarak bulunur.

Üçüncü tip denklemin çözümü için ise ilk önce bir kenarı x uzunluğunda olan bir kare çizeriz daha sonra bu karenin bir kenarından bir b uzunluğu alırız. Ulaşılan noktadan karşı kenara çizilecek doğrunun altında bir dikdörtgen oluşur (bx). Daha sonra b kenarının yarısı alınarak üstteki dikdörtgene bitişik olmak üzere bir kare çizilir [(b:2)²]. Şimdi bu küçük karenin ucundan (x-b) kadar uzatılır ve buradan yukarıya karenin üst kenarına bir dikme çıkıldığında birbirlerine eşit ve bir kenarları (x-b) ve diğer kenarları ise (b:2) uzunluğunda olan iki dörtgen buluruz. Daha sonra (x - b:2)² = (b:2)² + c olur. Sonra (x - b:2)² = (b:2)² + c.x - b:2 = (b:2)² + c.x = (b:2)² + c + b:2 sonucuna ulaşılır.

Harezminin bu büyük yapıtı 12. yüzyılda Chesterlı Robert ve Cremonalı Gerard tarafından Latinceye çevrilmiştir. Batı dünyası bu yapıttan çok fazla etkilenmiş ve cebiri bu sayede öğrenmiştir. Cebir batı dünyasında el-cebr isminden algebra'ya dönüştürülmüştür. Daha sonra batı dillerinde cebir algebra olarak tanımlanmıştır. Aynı zaman Harezminin bu yapıtı batı dünyasında cebirin kullanımının yaygınlaşmasında da büyük rol oynamıştır.

Harezmi Muhammed ibn İbrahim el-Fizari'nin Sanskrit dilinden Arapça'ya tercüme ettiği el-Sindhind (Siddhanta) adlı yapıtını Batlamyus'un Almagest'inden de yararlanarak düzeltmiştir. Muhtamelen bu yapıt iki ayrı şekilde çoğaltılmıştır. Bu yapıt kuramsal bilgilerde içeriyordu. Daha sonra bu yapıt Endülüslü astronom Meslemetü'l Mecriti tarafından güncelleştirilmiştir. Yapıtın bu versiyonu Bathlı Adelard'ın ve daha sonra muhtemelen Dalmaçyalı Hermann'ın gayretleriyle Latince'ye çevrilmiştir. Yapıtdaki en büyük gariplik Harezmi'nin açıları sinüs gibi trigonometrik fonksiyonlarla ifade ettiğini gösteren tablolar olmasıdır. Tabi bu tablolar bir çok soru işaretini ortaya çıkarmıştır çünkü Harezmi trigonometrik fonksiyonları biliyormuydu yoksa daha sonra Meslemetü'l Mecriti tarafındanmı eklenmiştir bilinmiyor. Ancak çoğu bilim tarihçisi sinüs ve kosinüsü ilk kez Harezminin kullandığını söylüyor. Tanjant ve kotanjantı ise Meslemetü'l Mecriti'nin eklediği iddia ediliyor. Ama ne olursa olsun trigonometri İslam bilim dünyasına aittir. Trigonometrinin İslam dünyasının eseri olması bu konuda yeterli bilgiye sahip olamamalarına rağmen islamın bilimi gerilettigini idda edenlere güzel bir cevaptır. Tabi sadece trigonometri değil matematik, astronomi, coğrafya, fizik, tıp gibi bilim dallarında da İslam bilim dünyası çok ilerlemiştir.

Harezminin önemli eserlerinden olan usturlabın yapımı ve kullanımını anlatan eseri kayıptır. Harezmi sadece matematikle değil coğrafyayla da ilgilenmiştir. Batlamyus'un Coğrafya adlı yapıtını Kitabu Sureti'l Ard (Yer'in Biçimi Hakkında) olarak tercüme etmiştir. Bu sayede yunanlıların matematiksel coğrafya hakkındaki bilgilerin İslam bilim dünyasına girmesinde büyük rol oynamıştır. Bu yapıt tercüme edilirken üzerinde eklemeler yapıldığından orijinalliğini biraz kaybetmiştir. Harezminin bu yapıtı önemli yerlerin enlem ve boylamlarını bildiren çok sayıda tablo içermektedir. Harezminin en ilgi çekici eserlerinden biride Nil'in kaynağını gösteren haritasının bulunmasıdır. Bu yapıt daha sonra Batlamyus-Harizmi Kuramı diye tanınmıştır. Harezmi 70 tane bilim adamıyla çalışarak 830 yılında dünya haritası çizmiştir. Dünyanın çevresini ve hacmini hesaplama çalışmalarında da yer almıştır. Güneş saatleri, usturlaplar ve saatler üzerine yazılmış eserleri de vardır. Coğrafyanın yanı sıra astronomi biliminde de eserler bırakmıştır. Astronomik cetvellerle ilgili kitaplar yazmış ve bu eserler 12. y.y. da Latince' ye çevrilmiştir.

Muhtemelen Türk olan Harezmi İslam bilim dünyasındaki yerini almıştır. Özellikle matematik alanında eserler bırakmış olan Harezminin eserleri Batı bilim dünyasında hala kullanılmakta ve öğretilmektedir. Bu büyük İslam alimi 840 yılında vefat etmiştir.

Bir önceki yazı Yarım Saat GüLme GaranTili Fıkra :D :D :D XD :))) hakkında bilgi vermektedir.

28-08-2011 01:57:09
 
Ferdİnand Porsche

Alman otomobil tasarımcısı sonraları "böcek" adı altında dünya çapında satış rekorları kıran KdF- Wagen'i (otomobil) 1935'ten itibaren üretmeye başladı. Porsche, İkinci Dünya Savaşı'ndan sonra ilk spor otomobili geliştirdi.

Porsche, Maffersdorf/Bohemia'da musluk tamircisi bir babanın oğlu olarak dünyaya geldi. Boş zamanlarında teknik ve elektrikle uğraştı. Liseyi bitirdikten sonra Viyana'ya giderek Teknik Üniversiteye dinleyici öğrenci olarak yazıldı. İlk işini elektrik motorları üreten bir işletmede buldu.

Otomobil tutkusunun farkına burada vardı. Lohner-Porsche Porsche 1900'daki Paris Fuarı'nda, kendi buluşu olan ve dingillerindeki elektrik motorlarıyla çalışan otomobili sergiledi.

Taşıt aracını Viyana saray arabaları yapımcısı Lohner şirketinin elemanı olarak yaptığı için, bu yeni otomobil Lohner-Porsche olarak tanındı. Bunun hemen ardından düşüncesini daha da geliştirerek elektrik motorlarını bir benzin motoru aracılığıyla besledi. Bu yeni tahrik biçimiyle şanzıman dişlisine gerek kalmıyordu.

Porsche teknik müdür olarak Viyana Neustadt'taki Austro-Daimler şirketine geçti. Burada tanınmış bir uzun mesafe yarışı olan Prinz-Heinrich-Fahrt için yaptığı otomobille yarışı bizzat kazandı.

Porsche ayrıca uçak motorları ve Birinci Dünya Savaşı'nda topları taşıyan çekici araç tasarımcısı olarak kendisine bir isim yaptıktan sonra, savaşın ardından tasarladığı iki binek otomobiliyle Austro-Daimler'deki son başarılarına imza attı. 1923'te firmanın Stuttgart'taki merkezine teknik müdür ve tasarımcı olarak geçti. Avusturya'daki Steyr şirketinde kısa bir süre (1928-30) çalıştıktan sonra, 55 yaşında bağımsızlığı seçti.

Kendi Şirketi Uluslararası bir şöhrete sahip olan Porsche, yorulmak bilmeksizin daha başka teknik yenilikler de geliştirdi ve çeşitli firmalar için komple yeni otomobiller tasarladı.

Esnekliği dolayısıyla yüklenme halinde dönebilen bir amortisör elemanı olan döner çubuk yaylanıcısını (süspansiyonunu) buldu. Sıkışık parasal durumunu, ardından gelen yıllarda Nasyonal Sosyalist rejimin önemli bir taşıt aracı danışmanı olarak düzeltti. İyi kişisel ilişkilerinin ve ortak çıkarlarının bulunduğu Hitler'in buyruğuyla Porsche, geniş halk kitlelerinin satın alabilecekleri sağlam bir otomobil tasarımına başladı.

Hitler'in diğer koşulları şunlardı: Saatte 100 kilometrelik hız, 4-5 kişilik yer,100 kilometrede en fazla 8 litrelik benzin tüketimi, 1.000 RM'nin (Reichsmark) altında satış fiyatı. 1936'da 4 silindirli Boxer motorlu, 22 beygir güçlü ve 984 cc hacimli ilk 3 test otomobili hazırdı.

Sonradan "Volkswagen" (böcek) olarak adlandırılan hava soğutmalı otomobil, önce Alman İşçi Birliği çerçevesindeki Nasyonal Sosyalist Yardım Kuruluşu "Kraft durch Freude"den (Neşeden güç doğar) esinlenerek "KdF-Wagen" olarak piyasaya çıktı. Porsche genelde bu otomobilin mucidi olarak kabul edildiği halde asıl konstrüksiyon planları, tasarımını 1925'ten itibaren geliştiren ve Porsche'ye 1932'de bunları boş yere öneren Çekoslavakya'lı Bela Barenyi'ye aitti.

Savaş İçin Tasarımlar 1937'de NSDAP'ye (Alman Nasyonal Sosyalist İşçi Partisi) giren Porsche bir yıl sonra SS'e de katıldı. Buna karşın, yalnız işini düşünen ve politikayla ilgisi olmayan bir insan olarak tanındı. Basit bir tasarımcıyken Wolfsburg'daki Volkswagen AG'nin kurucusu ve yöneticisi oldu. Porsche burada "böcek"in seri üretimine başladı.

Yeni teknik gelişmelere tutkun olan Porsche, İkinci Dünya Savaşı'nda askeri araç üretimine ağırlık verdi. Alman Devleti'nin en büyük ulusal onur madalyasını aldıktan sonra "profesör" ünvanını kullanabilen zırhlı araç tasarımcısı olarak ön plana geçti. Ayrıca Volkswagen'i askeri amaçla cip ve yüzer araç haline getirdi. Porsche'nin işletmesi savaşın bitmesine bir yıl kala Gmünd/ Karnten'e nakledildi.

Almanya'nın teslim oluşundan sonra tutuklanan Porsche bir Fransız cezaevinde kaldı. 1947'de kefaletle serbest bırakıldı. Bundan böyle, oğlu Ferry'nin yönetimi altında onarım işleri ve yedek parça üretimiyle ayakta kalmaya çalışan Karnten'deki fabrikasına kendini adadı.

1948'de kendi adı altında tanınan, 40 beygir gücündeki bir VW motoruyla donatılmış olan ilk spor arabasını piyasaya çıkarttı. İşletmesi 1950'de tekrar Stuttgart'a nakledildi ve Porsche burada 75 yaşında öldü

28-08-2011 01:57:17
 
Aristoteles

Aristoteles, Ege Denizi'nin kuzeyinde bulunan Stageria'da doğmuştur (M.Ö. 384-322). O dönemde, Stageria'da İyon kültürü egemendir ve Makedonyalıların buraları istila etmeleri bile bu durumu değiştirmemiştir. Bu nedenle Aristoteles'e bir İyonya filozofu denilebilir.

Annesi hakkında adından başka hiçbir şey bilinmemektedir; babası Nicomaihos, hekimdir ve Makedonya Krallarından Amyntus'un (M.Ö.393-370) hekimliğine getirildiğinde, ailesi ile birlikte Stageria'dan Makedonya'nın başkentine taşınmıştır.

Aristoteles burada öğrenim görmüş ve savaş yaşamına ilişkin ayrıntılı bilgiler ve deneyimler edinmiştir; bir taraftan İyon ve diğer taraftan Makedonya etkileriyle biçimlenmiş ve gençliğinde, ilgisini daha çok tıp üzerinde yoğunlaştırmıştır.

17 yaşına geldiğinde öğrenimini tamamlaması için Atina'ya gönderilen Aristoteles, hayatının 20 yılını (M.Ö. 367-347) burada geçirmiştir. Atina'ya gelir gelmez, Platon'un öğrencisi olarak Akademi'ye girmiş ve hocasının ölümüne kadar burada kalmıştır. Platon, sürekli olarak çekiştiği bu değerli öğrencisinin zekasına ve enerjisine hayran kalmış ve ona Yunanca'da akıl anlamına gelen Nous adını vermiştir. Atina'da kaldığı süre içerisinde Aristoteles, başka hocaları da izlemiş ve mesela Agora'da politik dersler almıştır.

Bir sarraf olarak iş hayatına atılmış ve daha sonra çok varlıklı olmuş Hermenias, kısa bir süre içinde çok geniş toprakları mülk edinmiş ve Aterneus'un yöneticiliğine gelmişti.

Akademi'nin öğrencisi ve hocası Platon'un hayranıydı. Onun devlet yönetimine ilişkin önerilerini çok olumlu karşılıyor ve Platon'un önderliğinde daha iyi bir yönetim oluşturmak istiyordu. Bu amaçla Assos'ta Akademi'nin kolu olan bir okul kurmuştu. Platon'un ölümünden sonra, Aristoteles bu okulda görev aldı ve üç yıl boyunca burada çalıştı. Bir ara Hermenias'ın yeğeni Pythias ile evlendi.

Aristoteles, Assos'ta kaldığı süre içerisinde, zaman zaman dostu Teofrastos'un memleketi olan Mytilen'e gitmiştir. Bu seyahatlar, Aristoteles'in gözlemler yapması ve kendisini yetiştirmesi açısından çok yararlı olmuştur.

Bu sıralarda II. Philip, oğlu İskender için iyi bir öğretmen aramaktaydı ve Assos'taki okulun yöneticisi olan Aristoteles, yavaş yavaş dikkatini çekmeye başlamıştı. Görev, Aristoteles'e önerildi ve o da bu öneriyi seve seve kabul ederek, II. Filip'in oturmakta olduğu Pella'ya gitti. Aristoteles'in öğretmenliği, 343 yılından 340 yılına kadar sürdü.

İskender, 336'da babası ölünce, onun yerine geçti ve eski öğretmeni Aristoteles'i danışman olarak atadı. Daha sonra İskender Yunanistan'daki ve Balkanlar'daki ayaklanmaları bastırmak üzere harekete geçince, Aristoteles, onu bırakarak, büyük idealini gerçekleştirmek amacıyla, yani yeni bir okul kurmak amacıyla Atina'ya döndü.

İskender'in M.Ö. 323 yılında ölmesi, Aristoteles'i çok güç bir durumda bırakmıştı; çünkü Lise'nin kurulması sırasında İskender'in yapmış olduğu yardımlar ve Hermenias için yazmış olduğu zafer türküsü, Atina'daki düşmanları tarafından hatırlanmıştı.

Aristoteles, dinsizlikle suçlandı ve Atinalıların, Sokrates'i ölüme mahkum etmekle işlemiş oldukları suçu yinelememeleri için Chalcis'e kaçtı ve orada yakalanmış olduğu bir hastalık sonucunda M.Ö. 322 yılında öldü.

Aristoteles'in hiçbir resmi kalmamıştır. Diogenes'e göre, ince bacaklı ve küçük gözlüymüş. Viyana'daki Sanat Tarihi Müzesi'nde sergilenmekte olan mermer başın Aristoteles'e ait olduğu iddia edilmekteyse de, bunu kanıtlayacak herhangi bir ipucu yoktur.

Aristoteles, İskender'i bırakarak Atina'ya döndüğünde, oradaki dostlarıyla buluşmuştu; ama aradan 20 yıl geçmiş olduğu için, artık eski okuluna dönemezdi. Başka bir okul kurmaya karar verdi ve bu maksatla kentin batısında bulunan ve Apollon Lyceios'un (Kurt Tanrı) anısına ayrılmış olan ormanlık alanı seçti. İşte bugün de kullanmakta olduğumuz Lise adı, bu Lyceios'tan gelmektedir.

Lise'de eğitim ve öğretimin nasıl yapıldığına ilişkin kesin bir bilgiye sahip değiliz; ancak bazı kaynakların bildirdiğine göre, sabahları yeni başlayanlara, akşamları ise geniş halk kitlelerine dersler verilmekteymiş.

Akademi ve Lise, aslında felsefe öğretimi veren okullardı. Ancak Akademi, daha çok metafiziğe ve bu arada ahlak ve siyaset gibi konulara yönelmişti. Lise'de ise araştırmalar, Aristoteles'in daha çok mantık ve bilimlerle ilgilenmesi nedeniyle, bu alanlarda yoğunlaşmıştı.

Aristoteles 13 yıl boyunca Lise'nin yöneticiliğini yaptı ve ölümünden sonra yerine arkadaşı Teofrastos geçti. Teofrastos, 37 yıl bu okulun yöneticiliğini üstlendi ve yapmış olduğu yeni düzenlemelerle Lise'yi kurumsallaştırmayı başardı; ancak Lise, Akademi kadar uzun ömürlü olamadı.

Aristoteles'in matematik bilgisi araştırmalarına yeterli olacak düzeydeydi; bilimleri matematik, fizik ve metafizik olarak üç bölüme ayırırken, Platon gibi, matematiğe - yani aritmetik, geometri, astronomi ve müzik bilimlerine - bir öncelik tanımıştı; ancak uygulamalı matematikle ilgilenmiyordu.

"Eşit şeylerden eşit şeyler çıkarılırsa, kalanlar eşittir." veya "Bir şey aynı anda hem var hem de yok olamaz (üçüncü durumun olanaksızlığı ilkesi)" gibi aksiyomların bütün bilimler için ortak olduğunu, postülaların ise sadece belirli bir bilimin kuruluşunda görev yaptığını söyleyerek, aksiyom ile postüla arasındaki farklılığa işaret etmişti. Aristoteles'in, süreklilik ve sonsuzluk hakkında yapmış olduğu temkinli tartışmalar, matematik tarihi açısından oldukça önemlidir. Sonsuzluğun gerçek olarak değil, gizil olarak varolduğunu kabul etmiştir. Bu temel sorunlar üzerindeki görüşleri, daha sonra Archimedes ve Apollonios tarafından yeniden işlenip değerlendirilecektir.

Aristoteles, astronomiye ilişkin görüşlerini Fizik ve Metafizik adlı eserlerinde açıklamıştır; bunun nedeni, astronomi ile fiziği birbirinden ayırmanın olanaksız olduğunu düşünmesidir. Aristoteles'e göre, küre en mükemmel biçim olduğu için, evren küreseldir ve bir kürenin merkezi olduğu için evren sonludur.

Yer evrenin merkezinde bulunur ve bu yüzden, evrenin merkezi aynı zamanda Yer'in de merkezidir. Bir tek evren vardır ve bu evren her yeri doldurur; bu nedenle evren-ötesi veya evren-dışı yoktur. Ay, Güneş ve gezegenlerin devinimlerini anlamlandırmak için Eudoxos'un ortak merkezli küreler sistemini kabul etmiştir.

Acaba Aristoteles bu kürelerin gerçekten varolduğuna inanıyor muydu? Elimizde buna ilişkin kesin bir kanıt bulunmamakla birlikte, geometrik yaklaşımı mekanik yaklaşıma dönüştürmüş olması, inandığı yönündeki görüşü güçlendirmektedir.

De Caelo'da (Gökler Üzerine) yapmış olduğu en son belirlemelere göre, en dışta bulunan Yıldızlar Küresi, yani evreni harekete getiren ilk hareket ettirici, aynı zamanda en yüksek tanrıdır. Metafizik'te ise, Yıldızlar Küresi'nin ötesinde, sevenin sevileni etkilediği gibi gökyüzü hareketlerini etkileyen, hareketsiz bir hareket ettiricinin bulunduğunu söylemiştir. Öyleyse Aristoteles, yalnızca gökcisimlerinin tanrısal bir doğaya sahip olduğuna inanmakla kalmamakta, onların canlı varlıklar olduğunu da kabul etmektedir.

Bu evrenbilimsel kuram, Fârâbî ve İbn Sinâ gibi Ortaçağ İslâm Dünyası'nın önde gelen filozofları tarafından da benimsenecek ve Kuran-ı Kerim'de tasvir edilen Tanrı ve Evren anlayışıyla uzlaştırılmaya çalışılacaktır.

Aristoteles'e göre, Evren, Ayüstü ve Ayaltı Evren olmak üzere ikiye ayrılır; Yer'den Ay'a kadar olan kısım, Ayaltı Evren'i, Ay'dan Yıldızlar Küresi'ne kadar olan kısım ise Ayüstü Evren'i oluşturur.

Bu iki evren yapı bakımından çok farklıdır. Ayüstü Evren ve burada yer alan gökcisimleri, eterden oluşmuştur; eterin, mükemmel doğası, Ayüstü Evren'e ezelî ve ebedî bir mükemmellik sağlar. Buna karşılık, Ayaltı Evren, her türlü değişimin, oluş ve bozuluşun yer aldığı bir evrendir.

Burası, ağılıklarına göre, Yer'in merkezinden yukarıya doğru sıralanan dört temel öğeden, yani toprak, su, hava ve ateşten oluşmuştur; toprak, diğer üç öğeye nispetle daha ağır olduğu için, en altta, ateş ise daha hafif olduğu için, en üstte bulunur. Aristoteles'e göre, bu öğeler, kuru ve yaş ile sıcak ve soğuk gibi birbirlerine karşıt dört niteliğin bireşiminden oluşmuştur.

Varlık biçimlerinin mükemmel olmaları veya olmamaları da Yer'in merkezine olan uzaklıklarına göre değişir. Bir varlık Yer'e ne kadar uzaksa, o kadar mükemmeldir. Bundan ötürü, merkezde bulunan Yer mükemmel olmadığı halde, merkeze en uzakta bulunan Yıldızlar Küresi mükemmeldir. Bu mükemmel küre, aynı zamanda Tanrı, yani ilk hareket ettiricidir.

Aristo'nun bu ve diğer görüşleri orta çağ boyunca bir çok filozozu etkilemiş, ve daha sonraki dönemleri de şekillendirmiştir. belki de felsefenin temel ilkeleri Arsito mantığı üzerine kurgulanmıştır.

28-08-2011 01:57:21
 
Paul Adrien Maurice Dirac

Paul Dirac 8 ağustos 1902 'de Ingiltere Bristol'de doğdu. Babası Isveçli annesi ingilizdi. Önce tüccar okuluna oradan Bristol Universite'sine gitti. Buradan 1921'de elektrik mühendisliği diploması aldı.Iki yıl daha Bristol'de matematik çalıştıktan sonra Cambridge St.John's College'de araştırma görevlisi olarak göreve başladı. Ph.d derecesini 1926' da aldı. Bir sonraki yıl St.John's College'in akademi üyesi, daha sonra 1932'de Cambridge de matematik profesörü oldu. Dirac Quantum mekaniğini matematiksel ve teorik olarak inceledi. Heisenberg 1928'de yeni quantum mekaniği teorisini ortaya atar atmaz, matematiksel karşılığı üzerinde çalıştı. Ve kendi Elektron görecelik teorisi(1928) ve oyuk teorisi(1930) ile ilgili Royal Society 'ye birçok yazı yazdı. Bu teori elektronla aynı kütleli, fakat pozitif yüklü bir parçacığın varlığını ortaya koyuyordu. Teori daha sonra deneysel olarak da C. D. Anderson tarafından doğrulandı. Bu parçacığa positron denildi. Dirac'ın çalışmalarının önemi onun Schrödinger'in özel görecelik denklemleriyle tanıttığı ünlü dalga fonksiyonlarında yatar. Aslında Dirac'ın çalışmaları, sadece biribirinden farklı olmakla kalmayıp, birbirine ters düşen quantum ve görecelik teorilerini birbirleriyle ilişkilendirdi. Dirac'ın bilimsel çalışmaları Quantum Theory of the Electron (1928) ve The Principles of Quantum Mechanics (1930; 3rd ed. 1947) adlı kitaplarında toplanmıştır. 1930'da Royal Society 'ye seçilmiş ,kraliyet ve copley madalyalarıyle onurlandırılmıştır. Dirac çok fazla yolculuk yapmış ve değişik üniversitelerde çalışmıştır. Bunlardan bazıları şunlardır: Copenhagen, Göttingen, Leyden, Wisconsin, Michigan, ve Princeton . 1929'da Amerika'da 5 ay geçirdikten sonra dünyayı dolaştı. Heisenberg 'le birlikte Japonya'ya gitti. Ve Sibirya üzerinden döndü. 1937'de Margit Wigner'le Budapeşte'de evlendi

28-08-2011 01:57:26
 
Johannes Kepler
Babası yoksul bir paralı asker, annesi de bir hancının kızıydı. Başlangıçtan beri bozuk olan sağlığının üç yaşında yakalandığı ve gözleriyle ellerinin zayıf kalmasına neden olan, çicek hastalığından sonra daha da kötüleşmesi nedeniyle ailesi din adamı olarak yetiştirilmesine karar verdi. Çok yoksul bir aileden gelmesine karşın üstün zekasıyla küçük yaşta dikkatleri çeken Kepler, Württemberg dükünün yardımıyla Tübingen Universite'sinde sürdürdüğü öğrenimini 1588 de bitirdi. 1591'de aynı üniversitede lisansüstü çalışmasını tamamladı. Michael Mästlin'in Tübingen'deki astronomi derslerini izleyerek Copernik sistemini benimsemesi Keplerin sonraki yaşamı açısından önemli bir dönüm noktası oldu. Daha sonra başladığı ilahiyat öğreniminin son yılında iken Graz'da ki Lutherci lisede boşalan matematik öğretmenliğine atandı. Böylece ilahiyat öğrenimini bırakmış oldu. 1594'te gittiği Graz'da evrenin yapısına ilişkin araştırmalarına başladı. Platoncu felsefenin ve Pythagorasçı matematiğin etkisiyle evrende var olduğuna inandığı matematiksel uyumu ortaya koymaya çalıştı. Bu amaçla eski yunalılardan beri bilinen ve Platon cisimleri olarak adlandırılan beş düzgün çokyüzlüden yararlanmayı düşündü. Uzay da yalnız bu beş düzgün çokyüzlünün var olabileceği eski yunanlılarca kanıtlanmıştı. Bu beş düzgün çokyüzlü şunlardı. Dörtyüzlü (yüzleri dört eşkenar üçgen olan piramid),küp,sekizyüzlü(sekiz eşkenar üçgen), onikiyüzlü(oniki düzgün beşgen) ve yirmi yüzlü(yirmiş eşkenar üçgen). Bu çok yüzlüler köşelerinden geçen birer küre içine yerleştirilebildikleri gibi bunların içine yüzlerine orta noktalarından teğet olacak biçimde birer küre yerleştirilebilir. Copernik astronomisi her biri bir küre üzerinde dolanan altı gezegen tanıyordu. Kepler bu altı gezegenin üzerinde dolandığı kürelerin aralarında beş ploton cismi bulunacak biçimde iç içe yerleşmiş durumda olduklarını öne sürdü. Kepler 1600'de, o sıralarda imparatorluk matematikçiliğine atanan Tycho Brahe'nin yanına gitti ve onun asistanı oldu. Brahe ertesi yıl ölünce imparatorluk matematikçiliğine atandı. Kepler yıldızların insanların yaşamlarını yönlendirdiği yolundaki boş inancı redetmesine karşın, evren ile insan arasında belirli bir uyum olduğuna inanıyordu ve astrolojiye dayanan öngörüleriyle ün yapmıştı. Tycho Brahe'nin araştırma grubunda Kepler'e Mars'ın incelemesi görevi verilmişti. Ama o önce ışığın atmosferde kırılması olgusunu incelemek gerektiği kanısına vardı. Dış uzaydaki gökcisimlerinden gelen ışık ışınlarının, Yeri çevreleyen yoğın atmosfere girdiklerinde nasıl kırıldığı konusundaki araştırmalarının sonuçlarını Ad vitellionem Paralipomena Quibus Astronomiae Pars Optica Traditur(astronomideki optik konuların incelenmesi konusunda Vitellio'ya ek) gibi alçakgönüllü bir başlık altında yayımladı.Brahe'nin gözlem sonuçlarını dairelerden oluşan ve düşünebildiği her türden yörünge biçimine uydurmaya çalışıp başarıya ulaşamayan Kepler, Kopernik'in görüşlerinden de esinlenerek, dairesel olmayan yörüngeleride ele aldı. Ve doğru sonuca ulaştı. Mars odaklarından birinde Güneş bulunan eliptik bir yörüngede dolanıyordu. Gezegenler yörüngede dolanırken eşit zaman aralıklarında eşit yol almıyordu ama gezegeni güneşe birleştiren doğru parçası eşit zaman aralıklarında eşit alanlar tarıyordu Bu iki yasa bügün Kepler'in birinci ve ikinci yasası olarak bilinir. Keplarin üçünçü yasası ise Gezgenlerin güneşe olan ortalama uzaklıklarının üçünçü kuvveti , yörüngedeki dolanma sürelerinin karesiyle orantılıdır. Bu üç yasa yarım yüzyıl sonra Isaac Newton'un evrensel kütle çekimi yasasını bulmasında belirleyici rol oynamıştır.

28-08-2011 01:57:31
 
Nicolas Copernicus

Copernik modern astronominin kurucusu olarak bilinir. Polonya'da doğdu. Cracow üniversitesine gönderildi. Burada matemetik ve optik üzerine çalıştı. Italya' da amcasının zorlamasıyla akademik yaşamının geri kalan günlerini geçireceği Frauenburg katedraline rahip olarak atandı. Bu pozisyonundan dolayı gücünün doruğuna erişti. Fakat sürekli öğrenci olarak kaldı. Boş zamanlarında resim yaptı ve yunan şiirlerini latinceye çevirdi. Onun astronomiye zaten var olan merakı giderek bir numaralı ilgi alanı oldu. O araştırmalarını kendi başına ve yardım almadan yaptı. Gökyüzünü kathedralin duvarları içindeki bir kuleden gözlemledi ve bu gözlemleri teleskop'un icadına yüzlerce yıl kala çıplak gözle gerçekleştirdi. 1530'da dünyanın kendi ekseni etrafında günde bir kere , güneşin etrafında yılda bir kere döndüğünü iddia ettiği büyük çalışması De Revolutionibus'u bitirdi. Bu o zamanlar inanılmaz birşeydi. Copernik'e kadar, batı dünyası evrenin gerisinde hiçbirşey olmayan kapalı ve küresel bir yapıda olduğunu iddia ettiği Ptolemiac teorisine inanıyordu. O zamana kadar düşünürlerin hemfikir olduğu Claudius Ptolemy Alexandra'da yaşayan bir Mısırlı'ydı. Potelmy'e göre dünya; sabit, hareketsiz ve evrenin merkezine konumlandırılmış güneş dahil herşey onun etrafında dönmekte idi. Bu insan doğasına çekici gelen bir teoriydi. İnsanın günlük gözlemlerine ve egosuna uygun düşen birşeydi. Copernik teorisini yayımlamakta acele etmedi. Teorinin birkaç astronom arasında incelenerek, kendisine fikir verebileceğini düşündü. Copernik' in çalışmaları, eğer genç bir adam bu çalışmaları 1939'da incelememiş olsaydı hiçbir zaman basılacak duruma gelemeyebilirdi. 66 yaşındaki bir rahibin yazısını okuyup ilgilenen 25 yaşındaki Alman Profesör George Rheticus 'du. Copernik'in çalışmalarıyle birkaç hafta ilgilenmeyi tasarladı ama,iki yıl boyunca teori üzerine çalıştı ve teoriden çok fazla etkilendi. O zamana kadar Copernik teoriyi yayımlamakta isteksizdi. Kilisenin teorisi hakkında ne söyleyeceği ile çok ilgilenmesede o herşeyin mükemmel olmasını isteyen ve 30 yıl teori hakkında çalışmasına rağmen hiçbir zaman tamamlanmadığını düşünen biriydi. Copernik için gözlemler sürekli tekrar edilmeliydi(Ilginç olan dünyanın 300 yılının kaybına yolaçan elyazmaları 19. yüzyıl ortalarında Prag'da bulundu. Bu yazmalar gösterdi ki Copernik teorisini sürekli gözden geçiriyordu. Bu yazmaların hepsi o zamanlar için bilgili kişilerin kullandığı latince ile yazılmıştı.) Copernik 1543'de öldü ve hiçbir zaman çalışmalarının nasıl bir sansasyon yarattığını göremedi. Ortaçağdan kalma filozofik ve dinsel inanışlara karşı geldi. Copernik teorisi insanın, evrenin kendisi için yaratılmadığını, yalnızca onun bir parçası olduğunu düşünmeye zorladı. Onun çalışmalarının en önemli yanı insanın Cosmos' a bakışını değiştirmiş olmasıdır.

28-08-2011 01:57:38
 
Stephen Hawking

Stephan Hawking 8 ocak 1942'de (Galileo'nun doğumundan tam 300 yıl sonra) Ingiltere Oxford'da doğdu.Ailesi kuzey Londra'da oturuyordu.Fakat II. dünya savaşı sırasında burası bebek dünyaya getirmek için çok emniyetli bir yer değildi. Bu yüzden Oxford'a taşındılar. Hawking sekiz yaşında iken, kuzey Londra'dan 20 mil uzaktaki St Albans gitti.Onbir yaşında St Albans okuluna kayıt oldu.

Buradan mezun olduktan sonra babasının eski okulu Oxford üniversite' si kollejine devam etti.

Stephan babasının tıpla ilgilenmesini istemesine karşın, o matematiği seviyordu. Fakat okulun matemetik bölümü mevcut değildi. Bu yüzden onun yerine fizik okumaya başladı. Üç yıl sonra doğa bilimlerinde birinci sınıf onur madalyasıyla ödüllendirildi.

Stephan daha sonra Cosmology üzerine çalışmak üzere Cambridge' e gitti. O zamanlar Oxford' da Cosmology üzerine çalışma yoktu. Cambridge'de Fred Hoyle'u supervisor olarak istemesine karşın süpervisorü Denis Sciama idi. Doktorasını aldıktan sonra ilk önce araştırma asistanı, daha sonra Gonville' de Caius kollejde profesör asistanı oldu. 1973'de Astronomi Enstütüsünden ayrıldıktan sonra Stephan uygulamalı matematik ve teorik fizik bölümüne geçti. 1979'dan sonra matematik bölümünde Lucasian profesörü oldu. Bu profesörlük 1663 yılında üniversite parlemento üyesi olan Henry Lucas tarafından kurulmuştu. Ilk olarak Isaac Barrow sonra 1669'da Isaac Newton'a verilmişti.

Stephan Hawking, evrenin temel prensipleri üzerine çalıştı. Roger Penrose ile birlikte Einstein'in Uzay ve Zamanı kapsayan Genel görecelik teoreminin Big Bang'le başlayıp karadeliklerle sonlandığını gösterdi. Bu sonuç Quantum Teorisi ile Genel Görecelik Teorisinin birleştirilmesi gerektiğini ortaya koyuyordu. Bu yirminci yüzyılın ikici yarısının en büyük buluşlarından biriydi. Bu birleşmenin bir sonucuda karadeliklerin aslında tamamen kara olmadığını, fakat radyasyon yayıp buharlaştıklarını ve görünmez olduklarını ortaya koyuyordu. Diğer bir sonucda evrenin bir sonu ve sınırı olmadığıydı. Buda evrenin başlangıcının tamamen bilimsel kurallar çercevesinde meydana geldiği anlamına geliyordu.

Onun birçok kitabından bazıları, The Large Scale Structure of Spacetime, General Relativity: An Einstein Centenary Survey, ve 300 Years of Gravity. Stephen Hawking'in en popüler ve ençok satan iki kitabı; A Brief History of Time ve daha sonraki kitabı, Black Holes and Baby Universes and Other Essays.

Profesör Hawking 12 onur derecesi almıştır. 1982'de CBE ile ödüllendirilmiş,bundan başka birçok madalya ve ödül almıştır. Royal Society'nin ve National Academy of Sciences (Amerikan ulusal bilimler akademisi(N.A.S.) ) üyesidir.

O teorik fizik çalışmaları ve yüklü programına rağmen ailesine (üç çocuk ve bir torun) her zaman zaman ayırmayı bilmiştir.

28-08-2011 01:57:43
 
Ernest Rutherford

Babası araba tamiri ile uğraşan ve çiftçilik yapan Rutherford, ailenin on iki çocuğunun ikincisiydi. Çiftliklerinde çalışır, hemen her konuda babasına yardım ederdi; fakat okulda da başarılıydı. Hatta, Yeni Zelanda Üniversitesi’nin verdiği burslardan birini kazanıp, yüksek öğrenimini sınıf dördüncüsü olarak tamamladı. Rutherford, üniversitedeyken fiziğe duyduğu büyük ilgiyi bir de manyetik radyo dalgaları yakalayıcısı geliştirerek gösteriyordu. Buluşların günlük yaşama uygulanmalarıyla ilgilenmezdi.

Cambridge Üniversitesi’nden burs kazandığı 1895 yılı, onun için bir dönüm noktası oldu. Verilen bursu birincilikle kazanan sınıf arkadaşı, ülkesinden ayrılmak istemediği için, ikinci sıradaki Rutherford, bu mutlu rastlantı ile bilim dünyasına kazanılıyordu. Aslında o yıl, Cambridge Üniversitesi’nin diğer üniversitelerin başarılı öğrencilerine ilk kez burs vermesi, Rutherford’un talih kapısını aralıyordu. Bursa haberi Rutherford’a ulaştığı zaman, tarlada patates söktüğü, bel küreğini bir kenara fırlatarak ‘artık bunları kim sökerse söksün’ dediği, hatta evlilik düşüncesinden de vazgeçip İngiltere’ye gittiği söylenir.

Rutherford, Cambridge’de, J.J. Thomson’ın gözetiminde çalışıyordu. Hocası sesini ayarlayamayan, kaba tavırlı, fakat elleri son derece becerikli son derecece becerikli bu taşralı genci kısa sürede benimsiyordu. Bu, deneylerinde dağınık ve onu bunu deviren, döken Thomson için önemli bir yardım sayılırdı. Rutherford kısa bir süre, Kanada McGill Üniversitesi’nde kalıyor, evlenmek için Yeni Zelanda’ya gidiyor ve çalışmalarını sürdürmek için yeniden İngiltere’ye dönüyordu.

Becquerel’in yakın izleyicisi Rutherford, yeni ve ilginç bir konu olan radyoaktivite alanında çalışmaya başlıyor, Curie’lerle ışıyan maddelerin yaydıkları ışınların birkaç çeşit olduğuna inanıyordu. Artı yüklü olanlara ‘Alfa’ ve eksi yüklü olanlara ‘Beta’ ışınları diyordu. Bu adlar ogün de kullanılıyordu, ancak ikisi birden ‘Hızlandırılmış Parçacıklar’ olarak ifade ediliyorlardı. 1900 yılında kimi ışımaların manyetik alandan etkilenmediği bulununca, Rutherford, bunların elektromanyetik dalgalardan oluştuklarını gösteriyor ve ‘Gama Işınları’ adını veriyordu.

Rutherford önce Soddy ile birlikte, sonra yalnız başına Crookes’un, uranyumun ışıma sonucu başka bir maddeye dönüştüğünü gösteren öncü araştırmalarını sürdürüyordu. Uranyum ve Toryum üzerinde kimyasal işlemler yaparak ve ışımanın ne olacağı merakı ile Rutherford ve Soddy bu elementlerin, ışıma sonucu bir takım ara maddelere dönüştüklerini gösteriyorlardı. Hemen hemen aynı günlerde, Amerika’da Boltwood da bu gözlemleri doğruluyordu. Soddy bu çalışmaları daha da ilerleterek ‘İzotop’ kavramını ortaya atıyordu.

Farklı her ara element, belli bir sürede miktarının yarısını kaybedecek bir hızla parçalanıyordu. Rutherford bu süreye ‘Yarı Ömür’ diyordu. 1906 ile 1909 yılları arasındaki sürede Rutherford ve yardımcısı Geiger, alfa parçacıklarını derinliğine inceliyorlar, bu parçacıkların elektronlarını kaybetmiş Helyum atomu olduğunu, hiçbir kuşkuya yer vermeyecek biçimde gösteriyorlardı. Alfa parçacıklarının Goldstein’in bulduğu artı yüklü ışınlara benzedikleri anlaşılıyor ve 1914 yılında Rutherford, en basit artı yüklü ışınların Hidrojen’den elde edilenler olması gerektiğini ileri sürerek, artı yüklü temel parçacık niteliklerinden dolayı ‘Proton’ adını kullanıyordu. Bundan sonraki yirmi yıl süresince her atomun eşit sayıda proton ve elektrondan oluştuğuna inanılıyor; fakat bugün kabul edilen yapısıyla hidrojen atomunun bir protonu olduğunu Heinsenberg gösteriyordu. Bugünkü bilgilere göre, proton artı; elektron eksi yüklüdür ve elektriksel olarak bir elektron, bir protonu dengeleyecek biçimde eşit yüklüdürler. Fakat protonun kütlesi, elektronun 1836 katıdır.

Alfa parçacıklarına duyduğu ilgi, Rutherford’u daha önemli şeylere yöneltiyordu. 1906 yılında daha Kanada’nın McGill Üniversitesi’ndeyken, ince madensel levhaların alfa parçacıklarını nasıl dağıttığını incelemişti 1908 yılında İngiltere’ye döndüğünde Manchester Üniversitesi’nde de bu deneyleri sürdürüyordu. Yarım mikron kalınlığındaki bir altın levhaya alfa parçacıkları gönderiyor ve parçacıklardan çoğunun hiç etkilenmeden ve yön değiştirmeden aradaki fotoğraf plakasına kayıtlandıklarını görüyordu. Fakat fotoğraf üzerinde, hem de büyük açılarla kimi dağılımlar oluyordu. Altın levha, 2000 atom kalınlığında olduğu ve alfa parçacıklarının çoğu dağılmadan arkadaki fotoğraf plakasına geçtiklerine göre, altın atomlarının büyük bir bölümü boşluktan oluşmalıydı. Kimi alfa parçacıkları, yönlerinden çok kesin biçimde;hatta 90 derece saptıklarına göre, atomun bir yerinde artı yüklü, alfa parçacıklarını saptırabilecek güçte (benzer yükler itişirler) büyük kütleli bir bölge bulunmalıydı. Rutherford bu deneye dayanarak, çekirdekli atom kuramını ilk 1911 yılında açıklıyor, atomun merkezinde, bütün protonları kapsayan ve hemen hemen kütlesinin tamamını oluşturan çok küçük bir çekirdek bulunduğunu ileri sürüyordu. Atomun dış bölgesinde, çok hafif ve görünürde alfa ışınlarının geçmesini engellemeyen eksi yüklü elektronlar yörüngedeydiler.

Bu atom fikri, 23 yüzyıl düşüncelere egemen olan Demokritus’un ‘maddenin en küçük parçası’ görüşünü yıkıyor ve gerçeklere daha çok uyan yeni bir model oluşturuyordu. Elementlerin ışıyarak ayrışması kuramı, alfa parçacıklarının yapıları üzeindeki çalışmaları, çekirdekli atom modeli Rutherford’a 1908 yılı Nobel Kimya ödülü kazandırıyordu. Başarıları bu kadarla kalmıyor, ilk kez Crookes tarafından düzenlenen ışıldama sayacını, yayılan ışınım (radyasyon) miktarını ölçmek için kullanılıyordu. Çinko sülfit bir ekran üzerindeki parıltıları sayarak (her atom parçasına karşılık bir parıltı) Rutherford ve Geiger, bir gram radyumun saniyede 37 milyar alfa parçacığı saldığını söyleyebiliyorlardı. Bu kadar büyük sayıda alfa parçacığı saçarak parçalanan maddelere, Curie’leri onurlandırmak için, o maddenin ‘Curie’si’ deniyordu. Bu arada Rutherford da unutulmuyor, saniyedeki bir milyon parçalanmaya ‘Rutherford’ adı veriliyordu.

Bu çeşit parıldamalar daha sonra saniyede kullanılıyor ve eser miktarda radyum içerikli çinko sülfit saatlere yerleştiriliyor, rakamların karanlıkta da görülüp okunması sağlanıyordu. Fakat bu saatlerin üretiminde çalışan işçilerin radyum hastalığına tutulmaları nedeniyle, uygulamaya bir süre sonra son veriliyordu.

Daha sonraları Rutherford, içine oksijen, hidrojen ve azot gazları doldurduğu bir silindirde ışıma miktarını ölçmeye girişiyor, azot gazında parıldamaların azaldığını; fakat hidrojen türünden olanların belirdiğini gözlüyordu. O halde alfa parçacıkları, azot atom çekirdeğinden protonlar çıkarıyordu. Çekirdekte kalan da oksijen atom çekirdeği olmalıydı. Böylece Rutherford, kendi ellerini kullanarak bir elementi diğerine dönüştüren ilk insan oluyordu. Başka bir deyişle, simyacıların rüyalarını gerçekleştiriyordu. Bu aynı zamanda, çekirdek tepkimesinin yapay ilk örneği oluyordu. Fakat 300 bin alfa parçacığından ancak biri çekirdek ile tepkimeye girdiği için, bir maddenin diğerine dönüştürülmesinde kolayca uygulanabilir bir yöntem sayılmıyordu.

Rutherford, İkinci Dünya Savaşı’ndan önceki yıllarda amansız bir Nazi düşmanı oluyor, bir çok Yahudi bilim adamının Almanya’dan kaçırılması işlerine karışıyor; fakat zehirli gazlar üzerindeki çalışmaları nedeniyle Haber ‘e ilgi göstermiyordu. Rutherford atomun parçalanmasıyla elde edilen enerjinin denetim altına alınıp kullanılamayacağını söylüyor, Einstein kuramlarına inanmıyordu. Hahn’ın fizyon yöntemi ile enerjiyi nasıl denetim altına alabildiğini görüp tahminlerindeki yanılgıyı anlayamadan, yaşamını yitiriyor ve Newton ile Kelvin’in yanlarına gömülüyordu.

28-08-2011 01:57:47
 
Charles Augustin de Coulomb

Batı Hint adalarında dokuz yıl askeri mühendis olarak çalışan Coulomb, sağlığının bozulması üzerine Fransa'ya döndü. Fransız devrimi patlak verince Blois'da küçük bir malikhaneye çekilerek tüm zamanını bilimsel araştırmalara ayırdı. 1802 'de halk eğitimi müfettişliğine getirildi.

Coulomb, kendi adıyla anılan yasayı, Ingiliz fizikçi Joseph Priestley'nin elektrik yüklerinin birbirini itmesine ilişkin bulgularını incelemek amacıyla başlattığı çalışmaları sonucunda geliştirdi. Bu amaca yönelik olarak, Priestley yasasında belirtilen elektrik kuvvetlerini ölçmeye yarayan duyarlı aygıtlar yaptı ve elde ettiği sonuçları 1785-1789 arasında yayımladı. Ayrıca benzer ve zıt kutupların birbirini itmesi ve çekmesine ilişkin ters kare yasasını buldu. Bu yasa Siméon-Denis Poisson'u geliştirdiği matematiksel magnetik kuvvetler kuramının temelini oluşturdu. Coulomb, makinelerdeki sürtünmeye, yeldeğirmenlerine, metal ve ipek elyafların esnekliğine ilişkin araştırmalarda yaptı.

28-08-2011 01:57:52
 
Sir Joseph John Thomson

Joseph John Thomson 18 aralık 1856'da Manchester varoşlarından Cheetham Hill'de doğdu. 1870'de Owens College ve 1876'da Trinity College, Cambridge' e burslu olarak girdi. 1880'de Trinity College'e akademi üyesi seçildi .Hayatı boyuncada akademi üyesi olarak kaldı. Daha sonra Lord Rayleigh'ın yerine Cambridge'e deneysel fizik profesörü oldu. 1884-1918 yılları arasında Cambridge ve Royal Institution'ın onursal profesörlüğüyle onurlandırıldı. Thomson'un ilk inceleme konusu ona 1884'de Adams ödülünü kazandıran, Treatise on the Motion of Vortex Rings adlı yapıtında bahsettiği, atomun yapısı üzerineydi. Onun, Application of Dynamics to Physics and Chemistry ve Notes on Recent Researches in Electricity and Magnetism adlı yapıtları, 1886 ve 1892 yıllarında yayımlandı. Bu son çalışması James Clerk Maxwell'in ünlü Treatise adlı yayımından sonra Maxwell'in üçüncü cildi olarak anılır. Ayrıca Thomson, Profesör J. H. Poynting 'le dört ciltlik Properties of Matter adlı ders kitabında işbirliği yaptı. Ve 1885 yılında Elements of the Mathematical Theory of Electricity and Magnetism 'i yayımladı. Thomson, 1896 yılında Princeton Universite' sine son çalışmalarını özetleyen dört konferans vermek için gitti. Bu konferanslar daha sonra Discharge of Electricity through Gases (1897) ismiyle yayımlandı. Amerika'dan dönüşünde hayatının en görkemli çalışmasını gerçekleştirdi. Bu çalışma 30 şubat 1897'de Royal Institution 'daki konferansında açıklayacağı, elektronun keşfiyle sonuçlanan Cathode ışıması idi. Onun 1903 'de yayımlanan Conduction of Electricity through Gases adlı kitabı, Rayleigh tarafından Thomson'un Cavendish Laboratuvarı' ndaki çalışmalarının bir gözden geçirmesi olarak nitelendirilmiştir. Bu yayımın daha sonraki basımını kardeşiyle birlikte iki cilt olarak 1928 ve 1933 yıllarında yayımladı. Thomson, 1904 yılında Yale Universite 'sinde elektrik üzerine altı konferans vermek için geri döndü. Bu konferanslar atomun yapısı üzerine bazı önerilerde bulunuyordu. Thomson, faklı atom ve molekülleri ayrıştırmak için bir yöntem geliştirdi. Bu yöntem daha sonra Aston, Dempster ve diğerleri tarafından birçok izotop'un bulunmasına yol açtı. Yukarıda bahsedilenler dışında, The Structure of Light (1907), The Corpuscular Theory of Matter (1907), Rays of Positive Electricity (1913), The Electron in Chemistry (1923) and his autobiography, Recollections and Reflections (1936), adlı yayımlarıda bulunmaktadır. 1884 yılında Royal Society üyeliğine seçildi. Ve 1916-1920 yılları arasında başkanlığını yaptı. 1894-1902 yıllarında Royal ve Hughes Madalyalarını, 1914 yılında Copley Madalyasını aldı. 1902'de Hodgkins Madalyası (Smithsonian Institute, Washington) ;1923'de Franklin Madalyası ve Scott Madalyası (Philadelphia), 1927'de Mascart Madalyası (Paris), 1931'de Dalton Madalyası (Manchester),ve 1938'de Faraday Madalyası (Institute of Civil Engineers) aldı. British Association 'nın 1909'da başkanlığını yaptı. Ve Oxford, Dublin, London, Victoria, Columbia, Cambridge, Durham, Birmingham, Göttingen, Leeds, Oslo, Sorbonne, Edinburgh, Reading, Princeton, Glasgow, Johns Hopkins, Aberdeen, Athens, Cracow ve Philadelphia Universite'lerinden doktora diploması aldı. 1890'da Rose Elisabeth ile evlendi. Bir oğulları oldu. 30 Ağustos 1940 yılında öldü

28-08-2011 01:58:27
 
Niels Bohr

Atomun yapısı üzerindeki çalışmaları ve atomların saçtığı ışın araştırmaları ile tanınır.
Babası fizyoloji profesörü olan Bohr, 18 yaşında Kopenhag Üniversitesi’nde fizik tahsiline başladı. İyi bir futbolcuydu. Daha iyi bir oyuncu küçük kardeşi 1908 yılının dünya ikincisi Danimarka olimpiyat takımında yer aldı.

26 yaşında doktorasını da tamamlayan Bohr, ileri eğitim bursuyla Cambridge’e gönderildi. Burada elektron kuramcısı J.J. Thomson ile ve daha sonra Manchester’de onun öğrencisi ve yine atom kuramcısı Rudherford ile çalıştı. 27 yaşında beş oğlu olduğu söylenen bir evlilik yaptı. 31 yaşında, fizik profesörü atandığı Kopenhag Üniversitesi’ne döndü.

Rudherford, çekirdekli atom kavramını; yani merkezinde ağır çekirdek bulunan çevresinde daha hafif, bulutsu elektronların dolaştığı bir atom modelini ortaya atmıştı. Atomların nasıl enerji verdiklerini bu model ve Planck’ın on yıl kadar önce yayınladığı kuantum kuramı ile açıklıyordu. Elektronlar gittikçe daralan yörüngeler çizerek çekirdek etrafında dönüyor ve bu hareketleri enerji oluşturuyorlardı. Bohr, daralan yörünge ve sonuçta çekirdek üzerine düşen elektronların varolduğunu kabul etmiyordu.

Atom modeli için daha inandırıcı bir biçim ararken Balmer’in hidrojen tayfı formülü onu, hidrojen atomunu daha yakından incelemeye yöneltti. Hidrojen atomu Lorentz’in belirlediği salınımdayken elektromanyetik ışınım yapmıyordu. Aslında Maxwell’in yasaları temel alındığında, böyle bir ışınım yapması gerekiyordu. Maxwell’e göre, kapalı bir yörüngede kaldıkları sürece ışınım olmayacağı görüşündeydi. Bu çelişkinin nedeni, elektronun sadece bir tanecik kabul edilmesinden ileri geliyordu. Nitekim De Broglie, elektronun yalnız tanecik değil, dalga boyu özellikli de olduğunu gösterince çelişki giderildi. Schrödinger de elektronun çekirdek etrafında dönmediği, yalnızca çevrede durağan bir dalga oluşturduğu görüşüyle, ileri sürülenleri doğruluyordu.

Bohr,”Elektron,yörüngesini değiştirip çekirdeğe yaklaşınca, ışıma olur” diyordu. Fakat, ışın soğuran atomda da elektron çekirdekten daha uzak bir yörüngeye giriyordu. Bu nedenle, elektromanyetik ışınım, bu parçacıkların salınım veya hızlanmalarından değil; enerji düzeylerindeki değişmelerden ileri gelmeliydi. Bu düşünce, atom dünyasının insanın yaşadığı dünyaya benzemediğini gösteriyor, her geçen gün atomun yapısını sağduyu ile açıklamak güçleşiyordu.

Sağduyu, örneğin gezegenlerin yörünge değiştirmediklerini söylüyordu. Elektron da, öyle herhangi bir yörüngeye giremezdi. Ayrıca, her yörünge değişmez bir enerji karşılığı idi. Eğer elektron bir yörüngeden diğerine geçiyorsa,saldığı veya soğurduğu enerji sabit olmalıydı. Bu miktar, kuantumların tümü demekti.Böylece, Planck’ın kuantum kuramı, elektronların atom içinde durum değiştirmeleri olarak yorumlanıyordu.

Hatta Bohr, hidrojen tayfındaki çizgilere karşılık olan enerji yörüngelerini seçebiliyordu.Bununla, bir elktronu bir yörüngeden, çekirdekten daha uzak bir yörüngeye aktaracak miktardaki enerji kuantasının soğurulduğunu gösteriyordu. Özellikle, ilk kez Balmer’in dikkatleri çektiği hidrojen tayfındaki düzgünlük de açıklanabiliyordu.Elektronların belli enerjilerini hesaplayabilmek için Bohr, Planck’ın sabitesini 2*3,14 ile bölerek kullanıyordu.

Bütün bunlara karşılık, tayf çizgilerinin ince ayrıntılarını açıklamak için Bohr’un kullandığı model yetersiz derecede karmaşıktı. Yörüngelerin yalnız dairesel olduklarını varsayıyor; fakat bu, Summerfield’in beyzi yörüngeler varsayıldığında durumun ne olacağı araştırmasını başlatıyordu. Sonuçta, değişik yörüngelerin kabul edilmesi zorunluluğu ortaya çıktı. Yapılması gerekli düzeltmeler bir yana; Bohr’un modeli atom tayfındaki çizgilerin ilk başarılı açıklaması oldu veya tayf çözümlemeleri ile atomların iç yapıları öğrenildi. Fakat yaşlı kuşağın tamamı, bu gelişmeleri benimsemiyordu. Rayleigh, Zeeman ve Thomson kuşku içindeydiler. Ancak, Bohr’un her zaman minnettar kaldığı Jeans, ondan yana çıkıyordu. Aslında Thomson’un karşı çıkmaları nedeniyle, Bohr ondan ayrılmış ve Rutherford ile çalışmayı yeğlemişti.

Kuşkusuz sonuçta Bohr ezici bir başarı sağladı ve 1922 yılı Nobel Fizik Ödülü’nü aldı. Bunu izleyen yıllarda, ikisi de Nobel Fizik Ödülü alan Franck ve Hertz, deneysel çalışmalarıyla Bohr kuramını doğruladılar. Bohr, hidrojenden daha karışık atom modellerini bir türlü geliştiremiyor ve “Birden fazla elektronun bulunduğu atomlarda iç içe küreler vardır. Herhangi bir elementin kimyasal özelliklerini belirleyen en dış küredeki elektron içeriğidir” diyerek çok küreselliğe ilk işaret edenlerden biri oluyordu. Bu düşünce Pauli sayesinde meyvesini verdi. Elektronun hem parçacık (bohr’un fikri) hem dalga (Schrödinger’in düşüncesi) olarak tanımlanması, 1927 yılında Bohr’u, bugün “tümlerlik” diye bilinen ilkeyi önermeye zorladı. Bu, bir şeyin birbirinden tamamen bağımsız; fakat her ikisi de kendi koşullarında geçerli, iki değişik biçimde kabul edilmesi ilkesidir.

1920-1930 döneminde Bohr, bir özel bira şirketinin desteğinde Atom Çalışmaları Enstitüsü’nü Kopenhag’da kurup yöneterek, (Joule zamanından beri bira sanayinin kuramsal fiziğe en büyük katkısı) burayı kuramsal fiziğin merkezi yaptı ve bilimsel yetenekleri Kopenhag’da toplayarak adeta yeni bir “İskenderiye” oluşturdu. 1933 yılında Hitler Almanya’da iktidara gelince, korku içindeki meslektaşları yararına elinden geleni yaptı, özellikle Yahudi fizikçilerin güvenliğini sağladı. Bir toplantı için 1939 yılında Amerika Birleşik Devletleri’ni ziyareti sırasında Hanh’ın “Uranyum, nötronlarla (on yıl kadar önce Chadwick’in bulduğu yüksüz dolayısıyla nötron adı verilen parçacık) +++++rdıman edilirse parçalanır (fission)” düşüncesini Lisse Meitner’in açıklayacağını söylemesi üzerine toplantı dağıldı ve bilim adamları bu düşünceyi sınamak üzere ülkelerine döndüler. Daha sonraları bu düşünce doğrulandı ve olaylar hızla gelişerek atom +++++sında doruk noktasına ulaştı.

Bohr, fisyon sürecine ait bir kuram geliştirmeye koyuldu. Bunda atom çekirdeğinin sıvı damlası gibi davrandığını varsayıyordu. Bohr, bu modelden yararlanarak, birkaç yıl önce Dempster’in bulduğu uranyum 235 izotopunun fisyona uğradığı sonucuna vardı ve bu çıkarımı kısa süre sonra doğrulandı.

Danimarka, 1940 yılında işgal edilince Chadwick’in önerisine uyarak ve bin bir güçlükle İsveç’e kaçtı, böylece muhakkak bir tutuklanmadan kurtuldu. Orada faaliyetlerini genişleterek, çoğu Yahudi bilim adamının Hitler’in elinden kurtulmasını sağladı. Sonra küçük bir uçakla İngiltere’ye geçerken yüksekten uçmak zorunluğu, neredeyse oksijensiz kalıp ölümüne sebep olacaktı. Danimarka’dan ayrılmadan önce Franck ve Lane’nin kendisine emanet ettikleri Nobel madalyalarını da birlikte aldı (kendi madalyasını da Finli savaş kurbanlarına yardım için hibe etmişti) ve asit dolu bir şişeye doldurarak Nazilerin elinden kurtardı.

1945 yılında Amerika Birleşik Devletleri’ne geçerek Los Alamos’daki atom +++++sı projesinde çalıştı. Atom +++++sının sonuçları hakkındaki endişeleri ve uluslar arası denetim amacıyla atom sırlarının bütün müttefiklerce paylaşılması isteği Winston Churchill’i neredeyse tutuklanmasını emredecek kadar kızdırmıştı. Savaştan sonra Kopenhag’a döndü, asitte erittiği altını çöktürerek madalyaları yeniden döktürdü ve sahiplerine ulaştırdı. Bohr, atom enerjisinin barışçı amaçlarla kullanılması için durmadan, yorulmadan uğraştı ve 1955 yılında Cenova’da ilk “Barış için Atom Toplantısını” düzenledi. Bu çabaları da “Barış için Atom” armağanı ile ödüllendirildi.

28-08-2011 01:58:33
 
Michael Faraday

Fraday'ın babası Ingiltere'nin kuzeyinden 1791 başında Newington köyüne iş aramak amacıyla gelmiş bir demirci idi. Annesi Faraday'ın zorluklarla dolu çocukluk döneminde ona duygusal yönden büyük destek olmuş, sakin ve akıllı bir köylü kadındı.Babaları çoğu zaman hasta olan ve iş bulmakta zorluk çeken Faraday ve üç kardeşinin çocukluğu yarı aç yarı tok geçti. Aile Sandemancılar adlı küçük bir hıristiyan tarikatının üyesiydi.

Faraday yaşamı boyunca bu inançtan güç almış, doğayı algılama ve yorumlamada bu inancın etkisi altında kalmıştır. Faraday çok yetersiz bir eğitim gördü. Bütün eğitimi kilisenin pazar okulu'nda öğrendiği okuma yazma ve biraz hesaptan ibaretti. Küçük yaşta gazete dağıtıcısı olarak çalışmaya başladı. 14 yaşında çiftci çıragı oldu. Ciltlenmek üzere getirilen kitapları okuyarak bilgisini genişletmeye başladı. Encyclopedia Brtanica'nın üçüncü baskısındaki elektrik maddesinden özellikle etkilendi. Eski şişeler ve hurda parçalardan yaptığı basit bir elektrostatik üreteçten yararlanarak deneyler yapmaya başladı. Gene kendi yaptığı zayıf bir Volta pilini kullanarak elektrokimya deneyleri gerçekleştrdi.

Londra'daki Kraliyet Enstütüsü'nde Sir Humphrey Davy tarafından verilen kimya konferansları için bir bilet elde etmesi Faraday'ın yaşamında dönüm noktası oldu. Konferanslarda tutduğu notları ciltleyerek iş isteyen bir mektupla birlikte Davy'ye gönderdi. Bir süre sonra laboratuvara yardımcı olarak giren Faraday, kimyayı çağının en büyük deneysel kimyacılarından biri olan Davy'nin yanında öğrenmek fırsatını elde etmiş oldu. 1820'de Faraday, Davy'nin yanından yardımcılık görevinden ayrıldı. Hans Christian Orsted, 1820'de bir telden geçen elektrik akımının tel çevresinde bir magnetik alan oluşturduğunu bulmuştu. Fransız fizikci Andre Marie Ampere tel çevresinde oluşan magnetik kuvvetin dairesel olduğunu gerçektede tel çevresinde bir magnetik silindir oluştuğunu gösterdi. Ve bu buluşun önemini ilk kavrayan Faraday oldu.

Soyutlanmış bir magnetik kutup elde edilebilir ve akım taşıyan bir telin yakınına konursa telin çevresinde sürekli olarak bir dönme hareketi yapması gerekecekti. Faraday üstün yeteneği ve deneysel çalışmadaki ustalığıyla bu görüşü doğrulayan bir aygıt yapmayı başardı. Elektrik enerjisini mekanik enerjiye dönüştüren bu aygıt ilk elektrik motoru idi. Faraday bu deneyleri gerçekleştrip sonuçlarını bilim dünyasına sunarken elektriğin farklı biçimlerde ortaya çıkan türlerinin niteliği konusunda kuşkular belirdi. Elektrikli yılan balığının ve öteki elektrikli balıkların saldığı, bir elektrostatik üretecin verdiği bir pilden yada elektromagnetik üreteçten elde edilen elektrik akışkanları birbirinin aynı mıydı? Yoksa bunlar farklı yasalara uyan farklı akışkanlar mıydı? Faraday araştırmalarını derinleştirince iki önemli buluş gerçekleştirdi.

Elektriksel kuvvet kimyasal molekülleri, o güne değin sanıldığı gibi uzaktan etkileyerek ayrıştırmıyordu, moleküllerin ayrışması iletken bir sıvı ortamdan akım geçmesiyle ortaya çıkıyordu. Bu akım bir pilin kutuplarından gelsede, yada örneğin havaya boşalıyor olsada böyleydi. Ikinci olarak ayrışan madde miktarı çözeltiden geçen elektrik miktarına dorudan bağımlıydı. Bu bulgular Faraday 'ı yeni bir elektrokimya kuramı oluşturmaya yöneltti. Buna göre elektriksel kuvvet, molekülleri bir gerilme durumuna sokuyordu. 1839'da elektriğe ilişkin yeni ve genel bir kuram geliştirdi. Elektrik madde içinde gerilmeler olmasına yol açar. Bu gerilmeler hızla ortadan kalkabiliyorsa gerilmenin ard arda ve periyodik bir biçimde hızla oluşması bir dalga hareketi gibi madde içinde ilerler. Böyle maddelere iletken adı verilir.

Yalıtkanlar ise parçacıklarını yerlerinden koparmak için çok yüksek değerde gerilmeler gerektiren maddelerdir. Sekiz yıl boyunca aralıksız süren deneysel ve kuramsal çalışmaların sonunda 1839'da sağlığı bozulan Faraday bunu izleyen altı yıl boyunca yaratıcı bir etkinlik gösteremedi. Araştırmalarına ancak 1845'te yeniden başlayabildi. 1855'ten sonra Faraday'ın zihinsel gücü azalmaya başladı.Ara sıra deneysel çalışmalar yaptığı oluyordu. Kraliçe Victoria bilime büyük katkılarını göz önüne alarak Faraday'a Hampton Court'ta bir ev bağışladı

28-08-2011 01:58:38
 
Varsayılan
James Chadwick

İyi bir ilk ve orta eğitimden sonra Manchester üniversitesi fizik bölümünden 20 yaşında mezun oldu. Verilen bir burstan yararlanarak ve Geiger ile çalışmak amacıyla Almanya’ya gitti. Almanya savaşa girince bir at ahırına kapatıldı. Fakat çeşitli Alman fizikçilerinin yardımlarıyla 1919 yılında İngiltere’ye dönüp araştırmalarına başladı. Rutherford ile birlikte çeşitli elementlerin alfa parçacıklarıyla +++++rdımanı üzerinde çalıştı.

Bu deneylerden elde ettiği verileri atomların çekirdekleri üzerindeki artı yükün hesabında kullandı. Aldığı sonuçlar Moseley’in geliştirdiği atom numaraları kuramına uyuyordu.

1920 yılında atomun iki parçacığı olduğu biliniyordu: J.J. Thomson’un bulduğu elektron ve Rutherford’un keşfettiği proton. Protonların tamamı çekirdekteydi. Ama çekirdek atom kütlesinin çoğunu oluşturacak sayıda proton içeriyorsa yükü büyük bir artı değerde oluyordu. Örneğin, helyumun dört protonluk bir kütlesi vardı fakat yükü iki proton karşılığı idi. O halde, çekirdekte geri kalan iki protonluk yükü giderecek birkaç elektron bulunmalıydı. Fakat elektronlar çok hafif parçacıklar olduklarından kütleyi etkileyemezlerdi. Hatta elektronlar, protonları bir arada tutan “çimento” gibi düşünülüyordu. Çünkü elektron olmadan aynı yükteki protonların bir arada duramayıp ayrılacakları sanılıyordu. Bu görüşe göre, helyum çekirdeğinde dört proton ve iki elektron bulunmalıydı ki kütlesi dört ve yükü net artı iki olsun.

Fakat fizikçilerin çoğu bu elektronlu çekirdekten rahatsız oluyor, yüksüz bir parçacığın varlığından şüpheleniyorlardı. Bu düşüncelerle Chadwick ve Rutherford gizemli parçacığı aramaya koyuldular fakat sonuç alamadılar. Güçlük, yüksüz parçacıkların hava moleküllerini iyonlaştırmamasıydı. Çünkü atomun parçacıklarının kolayca saptanması bu iyonlaştırma sayesinde mümkün oluyordu.

1930 ve 1932 yıllarında Bothe ve Joliot-Currie’lerin yaptıkları deneyler, berilyum gibi hafif elementlerin alfa parçacıklara tutulması sonucu ışınma tespit ettiler. Bu, parafinden protonlar yayılmasından anlaşılıyordu. Fakat hiç kimse bu olayı açıklayamadı.

Chadwick bu araştırmaları yeni deneyler yaparak sürdürdü. Ona göre akla yakın tek açıklama, alfa parçacıklarının berilyum atomu çekirdeğinden yüksüz parçacıkları çıkardığı ve bu yüksüz parçacıkların da (her biri bir proton kadar kütleli) parafinden protonları dışarı atmasıydı. Böylece, varlığından şüphelenilen yüksüz parçacık nötronu, bulmuş oldu.

Daha sonraki araştırmalar nükleer tepkimelerin başlamasında büyük rolü olduğunu gösterdi. Buluşunun bu önemi dolayısıyla Chadwick 1935 yılı Nobel fizik ödülünü aldı. O zamanlar uranyum fizyonunun da nötron sayesinde başladığı henüz bilinmiyordu. Üç yıl sonra Hahn ve Meitner bunu da bulup Chadwick’in buluşunun önemini bir daha gösterdiler.

Nötronun bulunmasıyla artık atom çekirdeğinde elektron bulunduğu görüşü geçersiz oldu. Fakat bu kez Heisen Berg, çekirdeğin proton ve nötrondan oluştuğunu ileri sürdü, yani helyum çekirdeği iki proton ve nötron içeriyor böylece kütlesi dört ve yükü de artı iki oluyordu. Belli bir elementin izotopları hep aynı sayıda proton içeriyor dolayısıyla çekirdek çevresindeki elektron sayıları da eşit oluyordu. Elementlerin kimyasal özelliklerinin elektronların sayı ve dizilişlerine bağlı olduğu anlaşıldı. İzotoplar ise aynı elementin değişik sayıda nötron içermesi sonucu oluşuyorlardı. Örneğin, iki cins klorin atomundan biri 17 proton ve 18 nötronla 35 kütleli ve diğeri de 17 proton ve 20 nötronla 37 kütlelidir. Onun için birine klorin 35 ve diğerine klorin 37 denilmektedir. Bütün bu buluş ve çalışmalarla 20 yıl kadar önce Soddy ve Asfon’un ortaya koydukları “izotoplar kuramı” bilimsel temele kavuşmuş oldu.

Çekirdeğin proton ve nötrondan oluştuğu sonucuna varılması biri dışında bütün kuşkuları gidermişti. Fakat hepsi artı yüklü parçacıkları bu kadar dar bir yerde tutan neydi? Bu soruyu cevaplandırmak için üç yıl sonra sonuçlanacak Yukawa’nın çalışmalarının sonuçlarını beklemek gerekiyordu.

İkinci Dünya Savaşı sırasında ve Meitner’in fizyon olayını açıklamasından hemen sonra fakat Amerika’nın el atmasından çok önce, Chadwick İngiltere’nin Atom +++++sı Projesi’nin başına geçti ve önemli çalışmalar yaptı

28-08-2011 01:58:43
 
James Clerk Maxwell

Maxwell bir idealistti. Platon’dan Descartes ve Spinoza’ya felsefe tarihinin en iyi okuyucularından biriydi. Bu tarihten Doğanın özdeğin mantıksal/ussal örgütlenişi olduğunu öğrendi. İnsan usunun kategorilerinin kendinde-evrenin de kategorileri olduğunu, Doğanın ancak ona usu ile yaklaşan fizikçiye yanıt verebileceğini kavramadı.

Ve tüm kuramsal çalışmasında doğanın usunu, doğanın mantıksal yapısını, düzen ve uyumunu bulmaya çabaladı. Maxwell’in evreni ussaldır, yasaldır, uyumludur, anlamlıdır.

Gözlem ve deneyim dediğimiz verilerin gerçekte kavramın belirlenimleri olduğunu kabul eden a prirori bilim yöntemi bilimin yalnızca arı kuram boyutuna indirgenmesi anlamına gelmez. Bu düşüncesiz görgücünün sanısıdır. Tam tersine, gerçek kuram o denli de özdeksel olgusallığın tam yüreğinden kavranışıdır, sözcüğün en tam anlamıyla en yararlı (ve aynı zamanda en zararlı) olabilendir, modern yaşamda teknoloji dediğimiz ve insanlığın gönenci için olduğu gibi sadistik erekler için de kullanılabilen tüm bilimsel uygulayımın olanağıdır.

Arı fizik hiçbir ‘yararcılığı,’ hiçbir pragmatizmi göz önünde tutmaz. Tersine, usun eytişimsel özgürlüğüne yabancı tüm böyle kaygıları, düşünceyi özgür işleyişinde engelleyen tüm öznel dürtüleri dışlar. Ama böylelikle ‘yarar’ kavramının kendisinin tözü olan alanın gerçekliğini saptama şansını kazanır.

Maxwell’in Edinburgh’ta İngiliz akademizminin mızmızlığından uzakta dinginlik içinde yaptığı çalışması optik, elektrik ve manyetik kuramları tek bir elektro-manyetik alan kavramında birleştirerek tümünün de aynı temel yasaların değişik belirişleri olduğunu gösterdi.

Tüm bunları ve ayrıca radyo dalgalarını, radar, ve ısının yayılımı fenomenlerini benzersiz ve büyüleyici bir eşitlikler dizgesinde birleştirdi. Çok genç yaşta ölen Maxwell’in fizikte ileri sürdüğü kimi kuramlar ancak ölümünden uzun bir süre sonra tanıtlanabildiler. Örneğin ivmelendirilen yüklü bir parçacık tarafından üretilen ışımanın ışık ile aynı hızla yayılmasının deneysel doğrulamasını göremedi. Einstein’ın görelilik kuramında bile göreli kılınamayan bu olgu modern fiziğin bütününde en önemli buluşlardan biri olma değerini taşır. Maxwell’in kavramları yirminci yüzyıl fiziğindeki ikinci büyük yeniliğe, nice kuramına götüren mantıksal yolu da gösterdiler.

Maxwell’in Faraday’a, görgül olanın ötesinde matematiğe ve en yalın kuramcılığa bile hoşgörüyle bakamayan bu harika ‘‘deneysel araştırmacı’’ya borcu, aralarındaki tüm benzemezliğe karşın, ölçüsüzdür. Matematikte aşağı yukarı hiçbir bilgisi olmayan ‘‘Faraday’ın incelemelerini okumayı sürdürürken,’’ der Maxwell, ‘‘onun fenomenleri kavrama yönteminin de matematiksel bir yöntem olduğunu algıladım, üstelik alışıldık matematiksel simgeler biçiminde anlatılmış olmasa da.

’’ Maxwell Faraday’ın deneyler yoluyla türettiği kavramsal yapıyı matematikselleştirdi. Ama matematikçi Maxwell’in çalışması gözlemci ve deneyci Faraday’ın kavramlarının matematiksel terimlere çevrilmesinin çok ötesine geçer. Aslında, Faraday’ın matematiğin ötesine giden deneysel kavramları ile karşıtlık içinde, Maxwell matematiksel kavramsallaştırmanın deneyselin ötesine geçebildiğini gösterir.

Maxwell’in alan kuramı ile ilgili buluşları ilk kez Heinrich Hertz tarafından 1877’de, Maxwell’in ölümünden sekiz yıl sonra, deneysel olarak doğrulanır. Maxwell’in kendisi görgül araştırmaya hiç de ilgisiz değildi ve başka pekçok deneysel aygıt tasarının yanısıra, yüzyılın en büyük araştırma özeklerinden biri olan Cavendish laboratuarının tasar ve yapımının sorumluluğunu da üstlendi.

28-08-2011 01:58:49
 
Werner Heissenberg

Heisenberg’in mistisizme olan bu katkısını hangi kültürel ortamda geliştirdiğini incelemeye artık geçebiliriz. Heisenberg, akademisyen bir ailenin çocuğudur. Bir insanın başına gelebilecek tüm çalkantıları, bunalımları yaşamış : ulusça yitirilmiş iki Dünya savaşı, Bavyera Sovyet devrimi, Bolşevik Sovyet “işgali”, iki Cumhuriyet ve Hitler’in üçüncü Reich’ı.

1901 yılında dünyaya gelen, 25 yaşında kuramsal fizik profesörü olan, 32 yaşında Nobel Fizik Ödülü alan Heisenberg, Hitler’in III Reich döneminde çok saygın bir profesördü. II Dünya savaşı boyunca Almanya’nın nükleer araştırma projelerinde başarılı olabilmek için delicesine çalıştı.

Werner Heisenberg ve kardeşi Erwin, Osnabrück’te oturan baba tarafından dedelerini sıkça ziyaret ediyorlardı. Dede Wecklein, gelecekte “buzlu çöller tilkisi” olarak anılacak olan Heinrich Himmler’in babası Gebhard Himmler’in yakın arkadaşıydı.

Heisenberg 1969 yılında anılarını yayınlar. Der Teil und das Ganze ( Fizik ve Ötesi ) adlı bu kitabına, çocukluk ve ergenlik yıllarını hiç ele almayarak, onu bir Alman vatandaşı ve biliminsanı olarak etkileyen dönemden, I. Dünya savaşının hemen ertesinden başlar. Kitabında ne aile ne de eğitim olaylarına yerverir. Heisenberg, I.Dünya savaşı sonrası gençlik hareketlerine katılır. Bu pratikten edindiği deneyim onun bir yetişkin olarak sarıldığı değerlerin oluşumunu belirler. Kitabında bu deneyimlere geniş yerayırır. Fizik ve Ötesi adlı kitabının ilk bölümünde Heisenberg, I. Dünya savaşının hemen ertesindeki çok yönlü, çoğu zaman zor ve karmakarışık deneyimlerini aktarır. Kitapta, atomun yapısına ilişkin yeni - Sokratçı diyalogların yanısıra, Bavyera Sovyet Cumhuriyet’nin bastırılması çabalarına nasıl yardımcı olduğunu anlatır. Anti - Sovyetizm aslında Heisenberg ailesinin bir tutkusudur. Anti - Sovyet çabalara kardeşi Erwin de büyük bir coşkuyla (!) katılır. Bu tutku, Gebhard Himmler’in “aşıları”nın tuttuğunu göstermektedir. Kitabın karmakarışık anlatımları içinden bir düşünce açık bir biçimde ön plana çıkar : gerek bireysel düşünsel gerekse toplumsal alanın tüm cephelerinde düzene, huzura kavuşma isteği. Heisenberg ve arkadaşları bir amacı yakalama ve bir yerlere ait olma duygusunu doyurmak için yanıp tutuşurlar. Bu doyumu en sonunda katıldıkları gençlik hareketinde yakalarlar.

İngiltere kaynaklı izci hareketi ( Boy Scouts ) 1909 yılında Almanya’da da benimsenir. Alman izciler kendilerine Pfadfinder adını yakıştırırar. İngiliz denkleri gibi Alman izciler de paramiliter ( askeri örgütlenmeyi örnek alan, gerektiğinde yardımcı askeri birlik görevi üstlenen) ve tinsel konularda son derece tutucu bir örgüttür. Boy Scouts’ların tersine Pfadfinder, uluslararası amaçlara daha az yönelik, genç üyelerinin varolan toplumsal yapıya uyum sağlamalarını gözeten bir politika izleme eğilimindedir.

Heisenberg, 1919 yılında 17 yaşındayken, Gruppe Heisenberg adlı 9 kişilik bir genç grubunu savaş sonrası dünyaya hazırlama görevi üstlenir. Gruppe Heisenberg, Genç Bavyera Ligi’ne bağlı B 18 takımının bir parçasıdır. Heisengerg bu göreve, Bavyera Sovyet Cumhuriyeti’nin karşı devrimle bastırılmasına, askeri görevi nedeniyle yaptığı katkılardan sonra geçmiştir. Gruppe Heisenberg, ve B 18 takımının diğer üyeleri, Max Gymnasium’un bu gruplara izin verdiği bodrum katlarında toplanırlar. Tüm Alman gençliği benzer toplantılara katılır.

1 - 3 Ağustos 1919 tarihleri arasında bu grupların liderleri, Regensburg yakınlarında bulunan bir ortaçağ kalesinde, Schloss Prunn’da toplanır. Toplantı sonunda bir ortak bildiri yayınlanır. Bu bildiriden Alman gençliğinin - aslında Alman toplumunun geniş bir kesiminin - isyanı okunur. Çağdaş kent ve endüstri “uygarlığı”na isyan bayrağı açılır, ortak bir amacın, anlamlı geleneklerin ve yerle bir olmuş değerlerin yitirilmesinden duyulan kaygı dile getirilir. Aynı bildiride toplumun yaşamdan kopuk bir mekanikliğe, kapitalist açgözlülüğe ve kişisel ikiyüzlülüğe itildiği, genç kesimin maddi ve tinsel kokuşmuşluk zincirini kırması gerektiği vurgulanır.

Schloss Prunn konferansına katılan gençlik liderleri ilk iş olarak Alman romantizminin canlanmasıyla ortaya çıkan değerleri kucaklar : ölü şehirlerden kaçıp saf, temiz doğaya çıkma yolu yeğlenir. Burada “toplam insan” olarak betimledikleri bir grup canlanmaktadır ; diğer ruhlarla birlikte kişinin ruhunun mistik canlanışına tanık olunur.

Ancak, toplumsal yenilenmenin ne zaman ve nasıl gerçekleştirileceği konusunda anlaşmazlıklar su yüzüne çıkmaya başlar. Schloss Prunn’un “radikal” reformistleri politik elitizmi kucaklar. Toplumun geniş kesimlerinin her açıdan tüketilmiş olduğunu, bir avuç gençliğin bu kesimleri kurtaramayacağını savunarak “uygarlık”tan tamamen el - etek çekip onun çökmesini beklemeyi, bu çöküntüden sonra yükselecek olan yeni düzeni izlemeyi önerirler. Schloss Prunn’un “tutucu” reformcularıysa politik elitizme karşı çıkar ve toplumda derhal bir reform yapılması çağrısında bulunurlar. Reforme edilmiş toplumun, kişinin kendisini reforme etmeye zorlayacağını savunurlar.

Aslında orta - üst sınıfın iyi eğitim görmüş gençliği dağlara çıkmak yerine demokratik bir baskı grubu oluşturabilseydi, politik elitizmin boşalttığı yere saldırgan, acımasız ++++++ unsurlar doluşmayabilirdi. I. Dünya savaşından hemen sonra Bavyera’da çok sayıda gizli örgüt, paramiliter gruplar, politik katiller ve geleceğin Nazileri cirit atmaya başlar. Bu arada şaşkına dönmüş olan orta kuşak ve yaşlı nesil de politik arenayı boşaltmaya başlar. Üniversiteyi bitirmiş olan gençler iş yaşamlarına atıldıklarında, toplumsal huzursuzluklar ve politik uçlara karşı hazırlıksız yakalanırlar. İşin acı yanı, 1920 li yılların sonlarına doğru, üniversitelerdeki öğretim üyelerinin apolitik tavırları, bu kurumları diktatör tavırlı demagogların türediği verimli topraklara dönüştürür. Çoğu öğrenciye itici gelen ve onları apolitik davranışlara iten işte bu demagoglardır.

1920 li yıllarda Heisenberg de “apolitik” bir gençtir. Onun için bilim ve politikanın içiçe olması olası değildir. Fizik, doğa ve müziği, varlığın ve gerçekliğin daha üst düzeyine ait uğraş alanları olarak görür.

Schloss Prunn konferansına dönecek olursak ; politik elitizmin bölücülüğü kendisini konferansın ikinci gününde gösterir. Bunun üzerine radikaller kendi konferansını toplar. Avusturyalılar ve onları izleyen Münih grubunun oluşturduğu radikaller kendilerine yeni bir ad verir : Neudeutsche Pfadfinderschaft ( Yeni Alman İzcileri ). bu grup görüşünü üç temel kavramla betimler : Gemeinschaft ( Topluluk - cemaat ), Führer ( Lider ) ve Reich ( İmparatorluk ). Bu üç kavram, daha sonra kurulan ve Werner Heisenberg’in grubunun da katıldığı Yeni İzciler Ligi’nin ideolojik temelini oluşturur.

Schloss Prunn konferansının ikinci akşamı, fraksiyonlar arkadaşça biraraya gelip şarkı söyler, müzik çalar ve tiyatro sergilerler. Heriki fraksiyon da Heisenberg için sevecendir. Ancak bu gruplar, onun aradığı gerçek düzenin yalnızca birer parçasını oluşturabilir. Bu fraksiyonlar toplumu bir “mistik merkezi düzene”, bir uyuma götürebilecek bağdan yoksundur. Bu durumu kitabına yansıtan Heisenberg, “Tartışmaları dinledikçe etkin bir orta yolun olamayacağı giderek belirginleşiyor ve bu durum bana acı veriyordu” diye yazar.

Akşamın alaca karanlığında kalenin surları dibine oturmuş şarkı söyleyen gençleri dinlerken Heisenberg ansızın “mistik merkezi düzen” olarak betimlediği şeyi duyumsadığını anımsar : “ Şarkı sona erdiğinde kemanın sesi gecenin sessizliğinde, gizemli bir biçimde aydınlatılmış olan kalenin dar kule pencerelerinden aşağı doğru aktı sonra yukarı dönerek ölümsüz yıldızlara doğru süzüldü...Müzik bitmiş ve kimse gecenin bu ciddi sessizliğini bozma girişiminde bulunmamıştı.”.

Ortaçağ kilisesinin kule diplerinde, yaz gecesinin yıldızları altında hüküm süren bu sessizlikte Heisenberg şunları yazar : “ Birdenbire merkezi düzenle olan bağımı kesin olarak duyumsadım”. Heisenberg için müzik, bilim, felsefe ve din birdenbire bütünleşmiştir. “Bach’ın müziğinin ezgileri beni serin bir meltem gibi sardı; tüm sis dağılmış, ötelerdeki yapı, merkezi düzen tüm görkemiyle ortaya çıkıvermişti. Müzik, felsefe ve dinde, merkezi düzene giden bir yol daima olmuştur. Bugün bu yol, Plato’nun, Bach’ın yaşadığı dönemlerdeki gibi açık ve izlemek isteyenleri çekiyor. Bunu ilk elden yaşadığım deneyimle biliyorum”.

Neupfadfinder’ın genç düşünürlerinin aralarında yaptıkları tartışmalar grubun ideolojisine uygun olarak teoloji ve idealist felsefe gibisinden ötedünya konularında yoğunlaşır. Ekonomi ve politikaya kimse ilgi duymaz. Grubun araştırmaları atom gerçeği, dinsel inancın kökenleri ve “mistik merkezi düzen” gibi konuları kapsar.

Heisenberg’in erken dönemlerine ilişkin bilimsel yaşantısında felsefi etkileri, özellikle de Platocu idealizmin etkilerini görmüyoruz. Bu dönemde Heisenberg daha çok Neupfadfinder’ın ötedünya kavramlarına gömülmüş olarak yaşar. Profesyonel düzeyde bir müzik gizilgücüne sahip olan Heisenberg bu yeteneğini geliştirmek yerine fiziği seçer. Ancak, Neupfadfinder’ın antibilimsel romantizminden etkilenmiş olması anlaşılır gibi değil ! Örneğin, orta yaşlı bir biliminsanıyken çağdaş fizikle Goethe’nin şiirsel dünyası arasında ; ileri yaşlarında da platoculukla fizik arasında bir bağ kurmaya çalışır. Yaşamının son yıllarındaysa, kuantum fiziğiyle ( kendi katkıları da içerilmek üzere ) Taoco felsefenin usdışı öğelerinin bağını kurmaya çalışan düşünürleri destekler.

Anılarını topladığı Fizik ve Ötesi’nin İngilizce baskısı 1971 yılında yapılır. Heisenberg, Fizik ve Ötesi adlı kitabının, World Perspectives adı verilen mistik ve dinsel bir dizinin 42. cildi olarak yayınlanmasına izin verir. Heisenberg’in adı bu dizinin editörler kurulunda yeralır. Bu dizide yeralan kitapların genel editör yazısı, bilim karşıtı Neupfadfinder’dan gelmiştir : “ World Perspectives’in savunduğu tez şudur : insanoğlu yeni bir bilinç geliştirme sürecine girmiştir. Bu bilinç, şu anda her ne denli ruhsal ve tinsel açıdan eli kolu bağlıymış gibi görünse de, insanlığı bugünkü korku, bilgisizlik ve yalnızlığından kurtarabilecek güçtedir. World Perspectives’in amacı, bütünlük, birlik ve organizmanın, madde ve erkeden daha yüce ve daha somut olduğunu göstermektir”.

Heisenberg, çoğu diğer Alman entellektüelleri gibi Hitler’in III. Reich’ının milliyetçi ereklerine sempatiyle yaklaşır. 1933 yılında Nazi örgütü olmayan tüm örgütler yasaklanır. Neupfadfinder’ın çoğu üyesi Nazi gençlik örgütlerine katılmakta zorlanmaz. Tarihçiler, Heisenberg’in grubundan yalnızca bir kişinin Nazilere katıldığını bildirir . Heisenberg’in Nazilere katılıp katılmadığı kesin olarak bilinmiyor. Ancak, mektuplarını Heil Hitler sloganıyla imzaladığı biliniyor.

Cevapla

"Ünlü Bilim Adamlarının Hayatları" - Sayfa 8 konusu hakkında etiketler
abdulhak adami adaminin adamlari adamlarinin adi adivar adnan akio alanindaki alanlar amperenin andre anlami arthur artur babasi babasinin bilim bilimadamlarinin biography birlikte biyografi biyografisi bulu camasir celebi cerrahiyyeti cocuk colombo deterjani donemi dunn dur dusme etti evliya farabi fransiz fritz harezmi hayati hayatlari henkel henkelin hippel ibuka icadi icat ihtilalinin iklim ilgilendigi ilk islerr kasiflerin kimdir kimya kisa kisaca kitabii kitabu lhaniyye lkcag marie markasinin masaru matematikcilerin mevsim morito NEDIRrr neyi okuduklari okullar olan olcegi olma onculerinden ozet ozetle pappus paradoksu persi piri realdo reisi resimleriyle saatcilik sarayinda sinir stadyum tane tarla tasiyan topkapi turk turkce unlu unvanini von yana yapmis yaptigi yasadigi yeni yer yunan yuzyil zenon

Yarım Saat GüLme GaranTili Fıkra :D :D :D XD :))) Önceki | Sonraki Kitap ile Ilgili Güzel Sözler




Saat: 03:33 - Webmaster Forumu - Rss - Arşiv
İletişim Bilgileri, Contact Us, Kullanım Sözleşmesi, Gizlilik